
A New Approach to Temporal Planning with
Rich Metric Temporal Properties

Son Thanh To1, Benjamin Johnson2, Mark Roberts2, & David W. Aha3

1Knexus Research Corporation, Springfield, VA 22153
2NRC Postdoctoral Fellow; Naval Research Laboratory, Code 5514; Washington, DC 20375

3Navy Center for Applied Research in AI; Naval Research Laboratory, Code 5514; Washington, DC 20375
son.to@knexusresearch.com | blj39@cornell.edu | {mark.roberts.ctr; david.aha}@nrl.navy.mil

Abstract
Temporal logics have been used in autonomous planning
to represent and reason about temporal planning problems.
However, such techniques have typically been restricted to
either (1) representing actions, events, and goals with tempo-
ral properties or (2) planning for temporally-extended goals
under restrictive assumptions. We introduce Mixed Proposi-
tional Metric Temporal Logic (MPMTL) where formulae are
built over mixed binary and continuous real variables. We in-
troduce a planner, MTP, that solves MPMTL problems and
includes a SAT-solver, model checker for a polynomial frag-
ment of MPMTL, and a forward search algorithm. We ex-
tend PDDL 2.1 with MPMTL syntax to create MPDDL and
an associated parser. The empirical study shows that MTP
outperforms the state-of-the-art PDDL+ planner SMTPlan+
on several domains it performed best on and MTP performs
and scales on problem size well for challenging domains with
rich temporal properties we create.

1 Introduction
Temporal planning has attracted the attention of researchers
in the robotics and AI communities. Numerous systems
have advanced temporal planning (Benton, Coles, and Coles
2012; Coles et al. 2009; 2010; 2008; Della Penna et al.
2009; Do and Kambhampati 2003; Dvorak et al. 2014;
Molineaux, Klenk, and Aha 2010; Penberthy and Weld
1994). However, these systems typically consider limited
temporal properties. For example, they may assume that ac-
tion conditions and effects exist at only the beginning, the
end, or over the entire duration of an action, but not some
other point or interval. Furthermore, the temporal goals they
might support are limited to goals with a deadline.

Other approaches (Bacchus and Kabanza 2000; 1998;
Bauer and Haslum 2010; Kabanza and Thiebaux 2005;
Patrizi, Lipoveztky, and Geffner 2013; Patrizi et al. 2011)
extend classical planning with temporally extended goals,
typically expressed in some temporal logic formalism (e.g.,
Linear Temporal Logic), while assuming other properties of
the problem are restricted to conditions of classical planning
(e.g., no durative actions, no temporal conditions or effects).

In this paper, we develop Mixed Propositional Metric
Temporal Logic (MPMTL), a hybrid of a (partial) satisfi-
ability modulo theory (SMT) (Barrett et al. 2009) and a
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metric temporal logic (Alur and Henzinger 1989; Koymans
1990). Formulae in MPMTL are built over mixed binary
and continuous real variables with metric modalities and can
solve three challenges by representing and reasoning about:
(1) conditions and effects for discrete and continuous vari-
ables and changes over time points and intervals other than
the start and end points and durations of the actions; (2)
conditions and goals over boolean and numeric variables in
second-order temporal relations (equivalent to double time
quantifiers); and (3) durative discrete and linear continu-
ous changes in the initial world. To our knowledge, such
a hybrid formalism has not been previously proposed, de-
spite being essential for temporal planning with continuous
change.

To demonstrate the utility of this approach, we extend
PDDL 2.1 with MPMTL into a language we call MPDDL.
We then present the MPMTL Temporal Planner (MTP),
which includes a SAT-solver and model-checker for a poly-
nomial fragment of MPMTL, a parser for MPDDL, and a
forward search algorithm. We introduce four domains and
problem instances that embody the aforementioned tempo-
ral features, and use them to demonstrate and test MTP. We
compare it with the state-of-the-art temporal planner SMT-
Plan+ using well-known PDDL+ benchmarks on which it
was reported to perform the best, as well as on one of
our newly created benchmarks that can be translated into
PDDL+. We found that MTP outperforms SMTPlan+, can
find a correct plan of hundreds complex actions within a
second for the new challenging problems, and that MTP’s
pruning and heuristic techniques substantially improve its
performance.

2 Motivation: Domains and Scenarios
In this section we present two problem domains and use
them to illustrate relevant challenges that cannot be ade-
quately addressed by other techniques.

2.1 Domain 1: Maintaining a Relay
The first problem domain extends the one we presented in
(To et al. 2016); it concerns the maintenance of a continuous
communications relay for a specified person p0 (at a known
disaster location), given a set of UAVs that share a given
base station b0. We will use this domain to illustrate some
of the limitations of current temporal planning approaches.



Challenge 1: Durative actions with intermediate ef-
fects. To continuously maintain a communications relay,
multiple UAVs must coordinate so that at least one provides
a relay at all times. To provide the relay, a UAV must fly
from b0 to p0’s location and hover; it can remain at p0 for
only a finite amount of time before returning to b0 to refuel.
When one UAV leaves p0 another must arrive to maintain the
continuous relay. We model each UAV v with a known fuel
capacity (fuel_cap v) and specified fuel consumption rates
when transiting (fly_rate v) and hovering (hover_rate v).
The takeoff, landing, and refueling of a UAV at b0 each takes
a non-zero amount of time, and can be performed by only
one UAV at any given time.

The relay action is a complex, durative action; it is chal-
lenging to model in current temporal planners. It can be
modeled in PDDL 2.1 with a set of sub-actions (e.g., take-
off, fly to p0, hover, fly to b0, land) using clips to tie each
subaction together (Fox and Long 2004). However, this can
be difficult to use, create an unnatural model, massively in-
crease the search space and computational complexity due
to the number of subactions and their permutations during
plan construction, and give rise to subtle, semantic issues
(Smith 2003; Fox and Long 2006; Coles and Coles 2014).
Using PDDL+ to decompose a complex action into instanta-
neous actions, processes, and events could be a better solu-
tion, yet it still encounters similar problems (as will show).
Another possible method is to express it as an HTN action
(e.g., in ANML (Smith, Frank, and Cushing 2008)). How-
ever, this requires synchronizing HTN action instances be-
cause they affect the same variables. This synchronization
problem is challenging due to temporal constraints and has
not been thoroughly studied.

Challenge 2a: Second-order metric temporal goal. Be-
cause of the initial world state, and the UAVs’ durative ac-
tions, the relay cannot be established at the initial time, but
must instead be defined such that it starts at or before a spec-
ified goal time tg . The length of time that the UAVs must
maintain the relay is substantially longer than the length of
time that any one UAV can maintain it, due to their phys-
ical constraints (e.g., fuel capacity). This requires multi-
ple UAVs to alternate providing the relay for different sub-
intervals.

If the relay need only be established, and not maintained,
then the goal can be expressed with a single temporal quan-
tifier: ∃t ∈ [0, tg]relayed. Many languages can adequately
describe this goal. The additional duration dg required to de-
scribe the problem of maintaining the relay instead requires
that expressing the goal using two nested, temporal quanti-
fiers: ∃t ∈ [0, tg]∀t′ ∈ [0,∈ [0, dg](att + t′relayed). Ex-
pressing such a goal directly in existing temporal planners is
not, to our knowledge, possible. In contrast, MPMTL repre-
sents this goal: ♦[0,tg ]〈relayed, [0, dg]〉.

Challenge 2b: Second-order metric temporal con-
straint for quantity. To maintain a continuous relay dur-
ing the switch between UAVs, more than one UAV must
hover over p0 for some non-zero period of time. However,
longer durations will result in a higher probability of UAV
collisions. Thus, we define a maximum period of time dtr
during which more than one vehicle may hover over p0. If

dtr is set to zero, this constraint can be easily expressed in
PDDL 2.1 and PDDL+ as (over all (< hover_num 2)). But
when dtr > 0, this constraint cannot be easily expressed
in current approaches. MPMTL represents this constraint:
¬♦[start,end]〈hover_num ≥ 2, [0, dtr]〉 .

Challenge 3: Durative changes in the initial world. Fi-
nally, consider a scenario in which one or more UAVs is
initially en route to b0. The temporal changes (e.g., the in-
tervals when the base is clear and each UAV is available, and
how their fuel levels vary) depend on the initial world model.
As such, they must be represented and accounted for to find
a correct plan. Later we will show how such initial changes
can be directly, succinctly represented in the initial model
by MPDDL without using additional dummy actions, pro-
cesses, events, Timed Initial Literals (TILs) (Hoffmann and
Edelkamp 2005), or Numeric Timed Initial Fluents (TIFs)
(Piacentini, Fox,& Long 2015), as used in other work (e.g.,
Tierney et al. 2012 used TILs to model ships moving in the
initial state).

2.2 Domain 2: Evacuation
Our second domain concerns the evacuation of people and
cargo from several cities ci in advance of a severe storm.
The storm is modeled as having different arrival times tsi
per city, where it will last for a duration of tei. This prob-
lem requires that the people be evacuated from the danger-
ous cities (prior to the arrival of the storm at their city) and
moved to safe cities using a set of buses bi, each with a de-
fined maximum capacity capi, where the buses may need
to ferry between the cities to complete the evacuation. Prob-
lems in this domain require representating several impacting
factors, such as the number of people per city, the initial lo-
cations of the buses, their capacity and speed, the distances
between cities, and the (un)loading durations. The goal
of safely evacuating all people from the dangerous cities
can be expressed in MPMTL as 〈(persons_nearby ci) =
0, [tsi, tei]〉. Such a temporal goal for a numeric value can-
not be represented using other temporal planners.

3 Related Work
Fox and Long (2003) proposed PDDL 2.1, which ex-
tends PDDL (McDermott 1998) to represent numeric ex-
pressions and durative actions with duration-dependent
effects. In 2006, they proposed another extension of
PDDL, PDDL+, for modeling mixed discrete and contin-
uous changes through the use of processes and events.
Smith et al. (2008) developed the Action Notation Model-
ing Language (ANML), which succinctly represents finite-
duration actions with numeric changes and supports a lim-
ited form of HTN actions. ANML then was first used in
the development of the temporal planner FAPE (Dvorak et
al. 2014). A few efforts (Do and Kambhampati 2003;
Rintanen 2015) extend PDDL2.1 to allow (first order tem-
poral) conditions and effects (for binary variables) over time
points and intervals other than the start and end points and
durations of the actions. We propose MPDDL, an extension
of PDDL based on MPMTL (To et al. 2016), for represent-
ing rich temporal features in planning such as high order
temporal constraints and durative complex actions for dis-



crete and continuous variables (and changes). These features
cannot be directly expressed in the other languages.

Several efforts (Bacchus and Kabanza 2000; 1998; Bauer
and Haslum 2010; Kabanza and Thiebaux 2005; Patrizi,
Lipoveztky, and Geffner 2013) extend classical planning and
PDDL with temporally extended goals, typically expressed
in LTL. These approaches do not consider other features in
temporal planning (e.g., temporal conditions, numeric ef-
fects, and continuous changes) that MDDL supports.

Many temporal planners use PDDL2.1 and employ a
forward search with a relaxed graph plan heuristic in the
state space for planning (e.g., SAPA (Do and Kambham-
pati 2003), CRIKEY3 (Coles et al. 2008) and its succes-
sors COLIN (Coles et al. 2009), POPF (Coles et al. 2010),
and OPTIC (Benton, Coles, and Coles 2012)). Cushing et
al. 2007 proposed to reduce temporal planning into non-
temporal planning by compiling temporal actions into in-
stantaneous actions with the same net effects for problems
whose plans must contain concurrent actions. By using STN
to check the consistency of temporal constraints, CRIKEY3
can solve problems that require concurrent actions of dis-
crete changes. COLIN extended CRIKEY3 by using LP to
handle concurrent actions with linear continuous changes to
the same variables. MTP instead employs a forward search
in the space of models with duration and quantity based
heuristics for solutions.

Many temporal planners adopt PDDL+, including TM-
LPSAT (Shin and Davis 2005), UPMurphi (Della Penna et
al. 2009) and its successor DiNo (Piotrowski et al. 2016),
SHOP2PDDL+ (Molineaux, Klenk, and Aha 2010), dReal
(Bryce et al. 2015), and SMTPlan+ (Cashmore et al. 2016).
Approaches in TM-LPSAT, dReal, and SMTPlan+ and those
in (Rintanen 2015; 2015b) translate PDDL+ problems into
a SAT problem. SHOP2PDDL+ extended SHOP2 (Nau et
al. 2003) as the first PDDL+ HTN planner. UPMurphi
and DiNo rely on uniform time discretization and plan val-
idation. All these planners support non-linear continuous
changes, unlike MTP. However, MTP supports high order
temporal properties and durative complex actions for dis-
crete and linear continuous changes, unlike the others.

4 Mixed Proposition Metric Temporal Logic
In this section we briefly review MPMTL (To et al. 2016),
focusing on its use in temporal planning.

4.1 Literals and Timeline
A literal ` is a proposition p or its negation ¬p. A nu-
meric literal is an (in)equality of the form xra, where x
is a numeric (discrete or linear continuous) variable (i.e.,
a fluent), r ∈ {=, 6=, <,>,≤,≥} is a relational opera-
tor, and a = (b, c) is a pair of real values. For example,
(fuel v) ≥ (0, 5.5) and (fly_ratev) = (3, 0) are nu-
meric literals. An interval literal (or i-literal) is a pair 〈`, I〉,
where ` is a literal, and I is a (time) interval. The i-literal
〈x = (b, c), [t, t′]〉 denotes that at time t, x = c, and then
x linearly changes with the rate b until time t′ (i.e., at any
time t” ∈ [t, t′], x = c + b(t”−t) holds). For example, the
i-literal 〈relayed, [5, 20)〉 denotes that relayed holds true at
any time point in the interval [5, 20), while 〈(fuel v) =

(−3, 80), [5, 9]〉 means that at time 5 (fuel v) = 80 and at
any time t ∈ [5, 9] (fuel v) = 80− 3(t− 5).

An instant literal of an i-literal 〈`, I〉 at time t ∈ I , de-
noted by 〈`, I〉(t), is the (in)equality x r c+b(t−I−), where
I− denotes the left endpoint of I , if ` is the pair (b, c), or
the literal ` otherwise. An i-literal 〈`, I〉 implies 〈`′, I ′〉
of the same variable if I ′ ⊆ I and ∀t ∈ I ′ 〈`, I〉(t) im-
plies 〈`′, I ′〉(t). 〈`, I〉 contradicts 〈`′, I ′〉 if I ∩ I ′ 6= ∅ and
∃t ∈ I ∩ I ′ such that 〈`, I〉(t) contradicts 〈`′, I ′〉(t).

A timeline µ of a variable x is a set of equality i-literals
ϕ of the same variable such that their intervals cover [0,∞)
and there does not exist a pair of those intervals that over-
lap. Thus, a timeline of a variable specifies the value of the
variable over all the interval [0,∞).

The instant literal of a timeline µ at time t, de-
noted by µ(t), is the instant literal 〈`, I〉(t) such that
〈`, I〉 ∈ µ and t ∈ I . The timeline µ implies
〈`, I〉 if ∀t ∈ I µ(t) implies 〈`, I〉(t). For exam-
ple, timeline {〈x=(1, 0), [0, 5)〉, 〈x=(0, 5), [5,∞)〉} im-
plies 〈x=(1, 0), [0, 4)〉 and 〈x≤(1, 4), [4,∞)〉.

4.2 MPMTL Formula
Let ` be a literal and I be a time interval. An MPMTL-
formula ϕ is defined by the following grammar:
ϕ ::= > | ⊥ | 〈`, I〉 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 2Iϕ | ♦Iϕ

where > and ⊥ denote true and false, and 2I and ♦I are
metric always and eventually modalities. The formulas 2Iϕ
and ♦Iϕ mean ϕ will be true after t time units for all t ∈ I
(i.e., universal quantifier) and some t ∈ I (i.e., existential
quantifier), respectively. The left-shift of a timeline µ by t
time units, denoted by µ−t, is a timeline defined as: µ−t =
{〈`, I − t〉 | 〈`, I〉 ∈ µ ∧ I − t 6= ∅}. Let t and t′ be time
points such that t′≥t. Then we have (µ− t)(t′− t) = µ(t′).

Let ~x = 〈x1, . . . , xn〉 be a vector of variables. Let
M = 〈µ1, . . . , µn〉 be a vector of timelines such that each
µi is a timeline of xi, for i = 1, . . . , n. Let M − t =
〈µ1 − t, . . . , µn − t〉 and ϕ be an MPMTL-formula built
over literals of variables in ~x. Then ϕ is true in M , or
M is a model of ϕ (denoted M |= ϕ) if: ϕ = 2Iψ and
∀t ∈ I |M − t |= ψ and ϕ = ♦Iψ and ∃t ∈ I |M − t |= ψ

4.3 Polynomial Fragment of MPMTL
An n-order literal is a formula of the form©1 . . .©n−1 ϕ,
where ϕ is an i-literal and©i denotes 2I , ¬2I ,♦I , or¬♦I .
This implies that there are n nested modalities in the n-order
literal, as an i-literal 〈`, I〉 is a 1st-order literal and it can
be written as 2I`. Let Dk be the set of DNF formulae of
n-order literals, where n ≤ k. Then checking whether a
formula ϕ in D2 has a model (satisfiability) requires poly-
nomial time, and checking whether a vector of timelines M
of variables in ϕ is a model of ϕ also requires polynomial
time. Two formulae are equivalent iff they have the same
set of models. Let Γ2 be the set of MPMTL formulae that
can be converted to an equivalent formula in D. Conditions,
constraints, and goals are expressed as formulas in Γ2, and
effects are represented by a set of i-literals.



5 MPMTL Representation for Planning
This section describes how MPMTL can be used to model
the world, actions, problem constraints, and goals with rich
temporal features as presented earlier in the scenarios. In
our approach, the world is represented by a model of the
variables in the problem, and temporal constraints are ex-
pressed by a MPMTL formula in Γ2.

5.1 Representing the World Model (Timelines)
Unlike most approaches that adopt state models of the world,
ours represents the world by a (1) timeline vector (model)
and (2) a set of constraints on the variables defined in the
problem. We call such a pair a world model. The execution
of an action will change the world model instead of a state.
This allows the world to be represented as a continuous pro-
cess, relevant to temporal planning with durative changes,
rather than as a (sequence of) discrete snapshot(s) with some
auxiliaries for outstanding durative changes. Also, the initial
durative discrete and continuous changes can be precisely
captured in the initial world model. For example, suppose
UAV v1 is en route to base b0 in the initial world as men-
tioned in the relay scenario. Then the initial changes can
be captured in the timelines of the corresponding variables
in the initial model. The following is an example of such
timelines:

〈¬at(v1, b0), [0, 7)〉, 〈at(v1, b0), [7,∞)〉
〈clear(b0), [0, 4)〉, 〈¬clear(b0), [4, 7]〉, 〈clear(b0), (7,∞)〉
〈fuel(v1) = (−2, 20), [0, 7]〉, 〈fuel(v1) = (0, 6), (7,∞)〉

In this example, we assume v1 will arrive at time 7, its
flying consumption rate is 2, its fuel level at time 0 is 20,
and the landing duration is 3 time units.

The constraint about concurrent hovering duration can be
represented as ¬♦[0,∞)〈hover_num ≥ 2, [0, dtr]〉 in the
initial constraint set. Alternatively, this constraint can also
be expressed in the relay action as presented next.

5.2 Actions
An action (schema) a is composed of a duration constraint
dur(a), a condition cond(a), a constraint C(a), and an ef-
fect eff(a). dur(a) is a set of literals of the form d r e,
where r ∈ {=, <,>,≤,≥} and e is a numeric value or an
expression of numeric variables, specifying the (range of)
value of the duration d. There is no explicit distinction be-
tween instantaneous and durative actions, as the former can
be defined as an action with d = 0 and instantaneous effect.

Condition cond(a) and constraint C(a) of action a is an
extension of a MPMTL formula in Γ2, as follows: (1) the
end-points of intervals in cond(a) and C(a) can be an ex-
pression of duration d and (2) the endpoints of the leftmost
intervals in cond(a) and C(a) can be an expression of the
start time ts. The effect eff(a) is a set of extended i-literals
of the form 〈`, I〉, where the endpoints of I can be an ex-
pression of the action start time ts and duration d, ` can be
x = b or x = ¬x (only if x is a proposition), or x+ = b
or x− = b (only if x is a numeric variable). In such an ex-
pression, b is either a constant in {0, 1} (if x is binary) or
in R, or an expression of other numeric variables, or a pair
(c, d), where c and d can be real valued or an expression of

other variables. The complex relay action with a UAV v, a
base b, and a person p in the example scenario can then be
represented as

Action: relay(v, b, p)
Duration: d ≥ 3× dfly(b, p) ∧

d = 2× dfly(b, p) + (fuel(v)− 2× dfly(b, p)
×ratefly(v)− fuelmin(v))/ratehv(v)

Condition: 〈at(v, b), [ts, ts + d]〉 ∧
〈avail(v), [ts, ts+d+dcool]〉∧
〈clear(b), [ts, ts + doff ]〉 ∧
〈clear(b), [ts + d−dland, ts + d]〉

Constraint: 〈fuel(v) ≥ fuelmin(v), [ts, ts+d]〉∧
¬♦[ts,ts+d]〈hover_num ≥ 2, [0, dtr]〉

Effect: {〈¬at(v, b), (ts, ts+d)〉,
〈¬avail(v), [ts, ts+d+dcool]〉,
〈fuel(v)−=(ratefly(v), 0), [ts, ts+d)〉,
〈fuel(v)+=(ratedif (v), 0), [ts+dfly(b, p), [ts+d−
dfly(b, p))〉,
〈¬clear(b), [ts, ts + doff ]〉,
〈¬clear(b), [ts + d−dland, ts + d]〉,
〈relayed, [ts + dfly(b, p), ts + d− dfly(b, p)]〉,
〈hover_num+=1, [ts+dfly(b, p), ts+d−dfly(b, p)]〉}

In this example, fuelmin(v) is the minimum fuel level al-
lowed for v during the scenario. The fuel consumption rates
when flying and hovering are given by ratefly and ratehv ,
and ratedif is their difference. The variable dfly(b, p) de-
notes the flying time of v from b to p, and doff , dland, and
dcool are the durations for v to take off, land, and cool down
after a flight (before it is available for refueling or flying).
The second duration constraint, above, specifies the maxi-
mum duration for the action before the fuel level is lower
than the minimum value allowed, while the first duration
constraint ensures that the fuel level of the UAV is suffi-
ciently large, such that the hovering time is at least as long
as half of the total flying time.

This action modeling allows for expressing all temporal
properties in the example scenarios. This includes temporal
constraints and effects at different times and for different
durations other than the start and end points and the duration
of action, as well as interval effects for discrete and linear
continuous changes, and second-order temporal constraints.
Conditions: The condition of the action is similar to the pre-
condition of a durative action in PDDL, with some semantic
differences. Although the condition in our model is temporal
(i.e., it must be true at the action start time and for a duration
or at some time in the future), it is subject to only the current
world model (which has been updated with the effects of all
previously applied actions), and it is not required to hold in
the new world model updated by the action. For example,
the condition 〈clear(b), [ts + d−dland, ts + d]〉 denotes that
the base b must be clear over the entire future interval when
the UAV will be landing, with respect to the current model.
However, in the updated model (once the UAV has landed),
this condition is no longer true due to the effect of the land-
ing action: 〈¬clear(b), [ts+d−dland, ts+d]〉. This prevents
other UAVs from taking off or landing during that time.

A similar precondition (e.g., over all (clear b) in PDDL
2.1), may be used to represent a property that must be true



for the entire duration of the action’s execution. The ac-
tion constraint in this model may be used to define such
a condition. For example, the constraint 〈fuel(v) ≥
fuelmin(v), [ts, ts+d]〉 ensures that the vehicle’s fuel level
stays above the defined minimum, for the current model and
all successor models. For example, during the relay action,
another action that changes the UAV’s fuel level (e.g., it pro-
vides fuel to another UAV) would be allowed only if the fuel
constraint is not violated.
Effects: An effect of the form 〈x+=(b, c), I〉 specifies that
x is increased by c at the left point I− of the interval I , and
its linear change rate is increased by b over the interval I . If
b = 0 then the pair (b, c) can be replaced with only c. Usu-
ally c = 0 if b 6= 0, which allows for the expression of both
discrete and continuous changes, as well as their combina-
tion (i.e., both b 6= 0 and c 6= 0). If b or c is an expression
of numeric variables, then the expression is evaluated with
the instant value of the variables at the action start time ts,
with respect to the variable’s timelines in the model. Effects
with the assignment sign = are called absolute effects while
those with the sign += or −= are relative. A variable is
called inertial if its value remains unchanged after an action
effect, until another effect changes it. In the relay example,
fuel(v) is inertial but relayed and clear are not.

We adopt the following assumptions and rules:

1. Variables can only change due to the effects of actions.

2. An action is executable in a world model only if (1)
its condition and duration constraint are satisfied in the
model, (2) all constraints, including that of the action,
hold in the resulting model after applying the action, and
(3) there do not exist two absolute effects to the same vari-
able x that simultaneously assign different values to x.

3. An absolute effect to x overrides any other effect to x (i.e.,
the value of x set by the absolute effect in its interval are
unchanged by other effects). A time point in this interval
is called a fixed point of x.

4. An effect e to an inertial proposition x will negate the
outcome of all relative effects that start after e and before
any absolute effect after t. The value of xwill extend until
it is set by another effect thereafter, and it is limited to the
effect interval, otherwise. We denote by the superscript
‘+’ an extendable effect to an inertial variable.

5. The linear continuous changes of relative effects are com-
bined in their intersection(s). For example, during the
time a UAV v is flying, another UAV relays fuel to v for
the interval I with the rate rfuel. The fuel level of v will
change with the combined rate rfuel+δfuel(v) over I .

6. All numeric variables are inertial. Effects to a numeric
variable x are limited to the following forms: (1) assign a
constant or a line segment to x for a time interval (e.g.,
〈x = 5, [0, d]〉, 〈x = (2, 5), [0, d]〉), (2) add (or sub-
tract) a constant to x at a time (e.g., 〈x += 2.3, [t,∞)〉),
(3) add a linear continuous change for an interval (e.g.,
〈x += (b, 0), [0, d]〉), and (4) a combination of the last
two forms (e.g., 〈x += (b, c), [0, d]〉). Note that the first
form is absolute and the rest are relative.

7. If an effect on a numeric variable x over an interval I
increases (or decreases) the value of x by δ at the right end
point I+, then its value will be increased (or decreased) by
δ over the interval (I+,∞), if there is no absolute effect
to x after I+. Alternately, if tf is the smallest fixed point
of x after I+, the value of x will increase (or decrease)
over the interval (I+, tf ).

5.3 MPMTL Temporal Planning Problem
An MPMTL temporal planning problem P is defined as a
tuple of the form 〈~x,A,MI , CI , G〉, where ~x is a vector of
variables, A is a set of actions, MI is a timeline vector of
~x, CI is a (possibly empty) set of formulae in D2 over ~x
denoting the initial constraint, andG is a formula inD2 over
~x denoting the goal.

Instant Action Let a be an action. If the start time and the
duration of a are assigned with constants ts and d (by a plan-
ner) then the endpoints of intervals in the condition cond(a),
constraint C(a), and effect eff(a) become constant. Further-
more, any variables in the right side of literals in these for-
mulae are replaced by their instant value of their timelines in
the current model at ts. Hence, cond(a) and C(a) become
formulae in D2. We call such an action an instant action (or
action, if there is no need to make such a distinction). Let
M be a model and C be a constraint set. An (instant) action
a is executable in the world model (M,C) iff a satisfies rule
2, as given above.

Update Timelines and Constraints The result of execut-
ing a in (M,C) is, intuitively, a new world model (M ′, C ′),
where C ′ is the new constraint set C ′ = C ∪ C(a), if a is
executable in (M,C), or null otherwise (rule 2). We need to
define an update function that, given an action a and a model
M , returns a new model M ′ = update(a,M). This is de-
fined through another function that returns a new timeline
update(e, µ) given an effect e (in eff(a)) and a timeline µ
of the same variable, as shown in Algorithm 1. This function
can be defined based on rules 3-7. We omit a formal defini-
tion of this function, since it is straightforward, yet tedious
and lengthy. Instead, one can see how this update function
works in Figure 1, which shows how an effect to a real vari-
able changes its timeline.
Algorithm 1 update(a,M)

Input: Instant action a, timeline vector M
Output: Timeline vector update(a,M)

1: Let X = M
2: for each effect e in eff(a) do
3: Let µ be the timeline in X of the same variable in e
4: Set µ = update(e, µ) {replace µ with update(e, µ)

in X}
5: end for
6: return X

Due to the above assumptions/rules, one can prove that
update(a,M) does not depend on the order in which the
effects in eff(a) are applied.

Solution A solution to a problem P is a sequence of in-
stant actions that are executable in the initial world model



Figure 1: Update timeline of the fuel level of UAV v2 with
the relative effect 〈(fuel v2)+=(12, 0), [10, 20)〉, suppose
during v2’s flight another UAV starts to relay fuel to v2 with
the rate 12 for the interval [10,20). Thus, (fuel v2) contin-
uously increases with the combined rate −6 + 12 = 6 over
interval [10,15]. The green, red, and blue lines denote the
effect, the timeline before and after (partial) the update.

(MI , CI) and results in a world model (Mg, Cg) such that
Mg satisfies goal G.

6 MPDDL: a PDDL Extension for MPMTL
MPDDL is an extension of PDDL2.1 (Fox and Long 2003)
that has been used in many state-of-the-art temporal plan-
ners (e.g., CRIKEY3, COLIN, POPF). We focus on the new
features of MPDDL; other features and syntax of PDDL 2.1
(e.g., cost metric and preferences) remain the same. The
only feature of PDDL 2.1 that this new language does not
support is the non-linear continuous change, as MPMTL is
subject to discrete and linear continuous changes.

New Syntax and MPMTL Formulae Expression
In MPDDL, temporal constraints in (pre)conditions, effects,
constraints, and goals are all expressed via MPMTL formu-
lae. For example, the relay action is expressed in MPDDL
as shown in Figure 2. The MPDDL parser supports infix
syntax for expressions, (in)equalities, and formulae.

Closed and opened left endpoints (resp. right endpoints)
of an interval are expressed by the characters ‘[’ and ‘(’
(resp. ‘]’ and ‘)’). Likewise, ‘and’ and ‘or’ denote conjunc-
tion and disjunction in the prefix expression, while ‘&’ and
‘|’ stand for ∧ and ∨ in the infix expression. The modalities
♦ and 2 are expressed by the pairs ‘<>’ and ‘[]’. A nega-
tion can be expressed by ‘-’ instead of ‘not’, as shown in the
second constraint of the action. The second i-literal in the
condition is expressed using the always modality (i.e., ‘[]’)
instead surrounded by angle brackets. MPDDL uses several
special keywords: ‘?ts’ and ‘?duration’ for start time and
duration of an action, and ‘inf’ to denote infinity.

MPDDL Domain and Problem Descriptions In general,
the structure of a domain remains the same as for PDDL 2.1.
However, MPDDL allows some new syntax and action de-
scription as previously mentioned. Also, MPDDL supports
indirect functions that are defined as an expression of other
functions (i.e., numeric variables or values given in prob-
lem instances) (e.g., the flying time (fly_dur ?v ?b ?p) and
consumption rate difference (rate_dif ?v) in Figure 2). This
allows for compact and readable description of actions and
problem instances.

MPDDL specifies timelines for initial changes and initial

(define (problem 1) (domain relay2)
(:objects v0 v1 v2 - uav)
(:init (at v0 b0) <-(at v2 b0), [0,15]> <(at v2 b0), (15,inf)>

<(cleared b0), [0,11)> <-(cleared b0), [11, 15]>
<(cleared b0), (15,inf)> <(fuel v2) = (-6,100),[0,15]>
<(fuel v2) = 10,(15, inf)>((fuel_used) = 0) ...)

(:constraint (hover_num) < 3 & (fuel_used) < 10000 )
(:goal (<>[0,15] <(relayed p0), [0,100]>)))

Figure 3: A partial description of a relay problem instance
with 3 UAVs. The initial durative changes as a result of UAV
v3 flying to b0 and landing at time 15 are expressed in the
timelines: (at v2 b0), (cleared b0), and (fuel v2). The landing
duration is 4 as expressed in the timeline of (cleared b0).

constraints expressed in MPMTL formulae. Figure 3 shows
a partial problem instance for the second relay domain used
in our experiments. The constraint in the problem descrip-
tion limits the number of UAVs that can hover concurrently
and the amount of fuel used for the relay task.

7 MPDDL Temporal Planner (MTP)
We developed the MPDDL Temporal Planner (MTP), which
includes a parser for MPDDL, a SAT-solver and model
checker for MPMTL, and a forward search algorithm.

7.1 A Parser for MPDDL
Currently, the parser supports only a portion of MPDDL
(i.e., the features presented in Section 6, including math ex-
pressions with the operators ‘+’, ‘-’, ‘*’, ‘\’, functions ‘min’,
‘max’, ‘pow’, and MPMTL formulae defined in the domain).
Not yet supported are universal and existential quantifiers,
preferences, cost metrics, and indirect functions.

Preprocessing and Grounding The parser can read any
MPMTL formula (e.g., in conditions) and reduce it to a DNF
of ordered literals (To et al. 2016). If the resulting for-
mula is not in D2, then the parser will notify the user. After
parsing all the domain and problem instance descriptions, it
performs grounding and preprocessing to eliminate redun-
dant variables and grounded actions. The parser uses the
MPMTL SAT-solver to check the satisfiability of conditions
and constraints in actions, discarding those whose condition
or constraints are not satisfiable.

7.2 MPMTL SAT-solver and Model Checker
We implemented a SAT-solver and model checker for theD2

fragment of MPMTL. Checking the satisfiability and satis-
faction of a D2 formula in a model can be done in polyno-
mial time (To et al. 2016). This follows from the property
that to check whether a point or line segment is above (or on,
below) another line segment, it is sufficient to check at their
endpoints and intersection (if it exists). The algorithms for
these modules are extensive, and not presented here for the
sake of brevity. The SAT-solver is used to check whether the
goal and the initial constraint of the problem are satisfiable,
while the model checker is used to verify the satisfaction of
action conditions, constraints, and the goal in a world model.

7.3 Heuristic Forward Search in the Model Space
We focus on problems with temporal features such as
second-order temporal constraints, maintenance goals, and



(:functions (distance ?b - base ?p - vip) (speed ?v - uav) (fly_rate ?v - uav) [...]
(fly_dur ?v - uav ?b - base ?p - vip) = (distance ?b ?p)/(speed ?v)
(rate_dif ?v - uav) = (fly_rate ?v) - (hover_rate ?v) )

(:action relay :parameters (?v - uav ?b - base ?p - vip)
:duration ( ?duration = 2*(fly_dur ?v ?b ?p) + ((fuel ?v)-2*(fly_dur ?v ?b ?p)*

(fly_rate ?v)-(min_fuel ?v))/(hover_rate ?v) &
?duration >= 3*(fly_dur ?v ?b ?p) )

:condition ( <(at ?v ?b),[?ts,?ts+?duration]> &
([][?ts,?ts+?duration](available ?v)) &
<(cleared ?b), [?ts,?ts+takeoff_dur]> &
<(cleared ?b), [?ts+?duration-landing_dur,?ts+?duration]> )

:constraint( <(fuel ?v) >= (min_fuel ?v), [?ts,?ts+?duration]> &
-(<>[?ts,?ts+?duration] <(hover_num) >= 2, [0, transit_dur]>) )

:effect (and <-(at ?v ?b), (?ts,?ts+?duration)> <-(available ?v),[?ts,?ts+?duration]>
<(fuel ?v) -= ((fly_rate ?v),0), [?ts, ?ts+?duration)>
<(fuel ?v) += ((rate_dif ?v),0), [?ts+(fly_dur ?v ?b ?p),

?ts+?duration-(fly_dur ?v ?b ?p))>
<-(cleared ?b), [?ts, ?ts+takeoff_dur]>
<-(cleared ?b), [?ts+?duration-landing_dur, ?ts +?duration]>
<(relayed ?p), [?ts+(fly_dur ?v ?b ?p), ?ts+?duration-(fly_dur ?v ?b ?p)]>
<hover_num += 1, [?ts+(fly_dur ?v ?b ?p), ?ts+?duration-(fly_dur ?v ?b ?p)]>

Figure 2: Description of the functions distance, fly_dur and rate_dif and of the complex durative action relay in MPDDL.

quantitative goals. These problems are not supported by
other current planners, and the effective techniques they use
(e.g., reduction to non-temporal planning, STN, and LP) do
not work for these problems. We employ time discretization
for the search, with a pruning technique. The discretization
step is computed dynamically each time based on the av-
erage action duration and the number of actions (function
step(M,A, t) Alg.2). Action durations are computed based
on their range constraints. If the action duration is assigned
by a value or expression, then it must satisfy all other in-
equalities in the duration constraint, or the action is not ex-
ecutable. If no assignment exists then MTP computes the
range [a, b] based on the duration constraint, and chooses
the midpoint (a+ b)/2 if b <∞ or a otherwise.

Search Algorithm Each search node represents a times-
tamped world model 〈(M,C), ts〉 as shown in Algorithm 2.
Using the set O of actions that have not been applied in the
model at the timestamp ensures that each action is applied
in the model at that time at most once (lines 7, 11). More
importantly, the actions whose conditions will be satisfied
by the effects of other simultaneous actions will eventually
be applied in the model at that time, before advancing the
model with a new timestamp (lines 12-14).

Pruning for Continuous Space of Model The pruning
technique is applied in lines 6, 11, and 14. In line 14, the
pruned(M,C, t) function checks whether the time t has al-
ready passed the earliest deadline of an unsatisfied goal. If
so, it discards the search node. Also, this function com-
putes the left shift model M−t of M and compares it with
that of other generated models. If there exists a search
node M ′, C ′, t′ such that M−t = M ′−t′, then (M,C, t)
is discarded if its heuristic heu(M, t) is not better than
heu(M ′, t′), or the search node M ′, C ′, t′ is invalidated and
will not be explored later (line 6). M−t = M ′−t′ means
that the rest of the model M from t is the same as the rest of
M ′ from t′. However, it is not necessarily that M = M ′ as

Algorithm 2 Search(~x,A,MI , CI , G)
Input: A temporal planning problem 〈~x,A,MI , CI , G〉
Output: A plan, if it is found, or NULL, otherwise

1: Create Priority Queue Q and Set O = A {Actions not
yet applied in the model at the timestamp}

2: Initialize Q with (MI , CI , 0, O)
3: while Q is not empty do
4: Pop the first element N = (M,C, t,O) from Q
5: if N is invalidated then continue
6: if M satisfies G then Construct and Output a plan
7: for each action o in O do
8: Compute the instant action a of o at time t
9: Compute S = update(a,M,C)

10: if S = null or pruned(S, t) then continue
11: Let (M ′, C ′) = S and Set O = O \ {o}
12: if O 6=∅ then Insert (M ′, C ′, t, O) to Q {Heuristic

of (M ′, t) as Priority in Q}
13: else if not (pruned(M ′, C ′, t+ step(M ′, A, t)))
14: then Insert (M ′, C ′, t+ step(M ′, A, t), A) to Q
15: end for
16: end while
17: return NULL
their prefixes can differ.

Heuristic for Interval and Quantitative Goals Interval
and quantitative goals specify a process rather than an in-
stant fact as considered in most other approaches. For ex-
ample, a partial plan that maintains a longer relay should
be considered better than those with a shorter relay, even
though none of them yet achieves the complete goal. Simi-
larly, in the second example scenario, preference is given to
plans that evacuate more people (or cargo). The (temporal)
relaxed graph plan heuristic does not seem to work well for
problems with these types of goals. Hence, we introduce a
new heuristic based on progress towards achieving the goal.
Specifically, the function heu(M, t) computes a value h as
an increasing function of the duration, in which an interval



goal has been partially achieved in the model, and of the
value for a quantitative goal achieved so far in the model. If
two search nodes have the same value h then the search will
favor the node with the smaller timestamp.

8 Empirical Study
We compared the performance of MTP, on a shared prob-
lem space (http://www.knexusresearch.com/
software/), with SMTPlan+ (Cashmore et al. 2016),
a state-of-the-art PDDL+ planner. We also evaluated the
effectiveness of MTP’s search heuristics and pruning tech-
niques by comparing its performance to that of its ablations
MTP-h (MTP minus heuristics) and MTP-p (MTP minus
pruning). In each case, we measured performance (on a set
of benchmark problems) as the total time (seconds) for plan
generation and the makespan for the computed plan.

Our benchmark problems include the relay and evacua-
tion examples introduced earlier, as well as the Car and Gen-
erator examples, on which SMTPlan+ seems to perform the
best among state-of-the-art temporal planners (Bryce et al.
2015; Cashmore et al. 2016). For a better evaluation, we
modified the Car benchmark problem by limiting the dura-
tion for each run, such that the problem may require multiple
runs in order to reach the goal. For MTP’s executability, we
reduced and translated the problem to one with a complex
(but linear) durative move action in MPDDL. This allowed
us to use MPDDL to define the optimality of the move ac-
tion as the one with the highest average speed. For the first
evacuation domain (evac), we defined three actions: board,
unboard, and drive; the second domain (evac2) extends
this with the complex action transport, which combines the
other three actions. We simplified and translated the domain
evac into PDDL+ for SMTPlan+ to execute, but not evac2
because PDDL+ does not support complex actions.

Table 1 displays our results for MTP and SMTPlan+ plans
for our benchmark problems. MTP outperformed SMT-
Plan+ on both measures for each domain. While SMTPlan+
cannot solve any of problems whose plan requires at least
two actions at different times (e.g., car-1-2, evac-1-2) MTP
can solve those problems within a second. We also observed
that, although the second evacuation domain evac2 contains
more actions, MTP found a solution in much less time, and
with a smaller makespan, than in the first evacuation domain
for the same problem instance. This is a result of MTP’s
heuristic, which is based on the progression of goal achieve-
ment, where the transport action may help guide the search
and illustrates the benefit of complex actions.

Table 2 displays our results for MTP and its ablations
on the relay and evacuation domains. For the relay sce-
nario, we created two domains relay and relay2, each of
which has two durative actions: relay and refuel. The
relay2 domain is more challenging than relay, as it contains
the second-order constraint for concurrent hovering UAVs,
and has more strict temporal constraints (e.g., narrower time
windows) for the UAVs to operate. The results in As shown,
MTP outperforms and scales better than its ablations; this is
reflected through the time to find a plan and the number of
nodes generated and explored during search with only one
exception: MTP-p performs virtually the same as MTP (de-

Problem SMTPlan+ MTP Problem SMTPlan+ MTP

gen-2 0.09/ 1000 0.04/ 1000 gen-6 0.22/ 1000 0.05/ 1000
gen-4 0.13/ 1000 0.04/ 1000 gen-8 0.42/ 1000 0.06/ 1000
car-1-1 0.11/ 32 0.04/ 10.95 evac-1-1 0.04/ 2.2 0.04/ 2.2
car-5-1 0.12/ 32 0.04/ 4.9 evac-1-2 TO 0.15/ 6.6
car-1-2 TO 0.05/ 4.85 evac-2-2 TO 0.2/ 4.22
evac-2-3 TO 38/ 7.48 evac2-2-3 N/A 0.54/ 7.04

Table 1: Performance of MTP and SMTPlan+ on multiple bench-
mark problems, given as the total time t (seconds) and makespan m
for a generated plan. The performance is expressed as: t/m. ‘TO’
denotes a time out (>30 minutes), and N/A indicates that SMT-
Plan+ does not support problem evac2-2-3. For the benchmark
problems used, gen-n denotes a linear generator problem with n
tanks, car-m-n indicates a Car problem with maximum accelera-
tor m that requires at least n runs in a plan, evac-m-n denotes an
Evacuation problem with two cities and m buses that requires at
least n loads of passengers.

Problem MTP MTP-h MTP-p
time/pl exp/gen time/pl exp/gen time/pl exp/gen

rel-50 0.07/7 28/41 1/5 1.4k/2.1k same
rel-100 0.08/11 52/75 150/9 232k/360k same
rel-150 0.11/17 83/120 TO same
rel-250 0.13/29 143/208 TO same
rel-1000 0.57/115 586/851 TO same
rel2-50 0.55/5 58/82 1/5 104/138 0.85/5 70/96
rel2-100 0.77/8 71/99 TO 0.84/8 83/113
rel2-150 0.79/12 99/136 TO 1/12 111/150
evac-2-3 38/10 30.6k/42k TO TO
evac2-2-3 0.54/6 242/338 TO 1.5/6 825/861

Table 2: Comparison of MTP with MTP-h and MTP-p. For each
planner, ‘time’, ‘pl’, ‘exp’, and ‘gen’ denote the running time,
plan length, and number of nodes explored and generated by the
search. rel-n (resp. rel2-n) indicates the instance of the relay
(resp. relay2) domain with the a goal requiring the maintenance
of the communications relay for n× 1000 time units.
noted by “same”) on the first relay domain.

9 Summary and Future Work
We showed how to use MPMTL to represent and solve plan-
ning problems with rich temporal properties. We presented
MPDDL, extended PDDL2.1 to support MPMTL, and used
it in MTP, the new planner we developed. We implemented
in MTP a parser for MPDDL, a SAT-solver, and a model
checker for a polynomial fragment of MPMTL. We created
domains and problems for the example scenarios and tested
MTP with these problems. Our results showed that: (1)
MTP outperforms the most competitive temporal planner
SMTPlan+ on the domains it performed best on, (2) MTP
scaled well on problem size for challenging domains with
rich temporal properties, and (3) the heuristic and pruning
technique we used in MTP improved its performance and
scalability.

In future work, we will improve MTP by using a better
discretization strategy or a more effective search technique.
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